Solve the absolute value equation.

1) $|4 m+2|=8$
2) $2|x+7|-7=1$

Solve the inequality. Write the solution set using interval notation and graph it.
3) $6 x-11 \geq 7 x-23$

4) $14<-4 b+2 \leq 30$

Solve the absolute value inequality. Write the solution set using interval notation.
5) $|7 x-6| \geq 4$
6) $2|x-3|<4$

Find the distance between the points, and find the midpoint of the line segment joining them.
7) $(-8,2)$ and $(-9,-5)$

Find the center and radius of the circle.
8) $(x+5)^{2}+(y-1)^{2}=144$

Write the standard equation for the circle.
9) Center at $(-8,-4)$, radius $\sqrt{17}$

Graph the equation.

10) $x^{2}+y^{2}+6 x+4 y+9=0$

Find the equation of the line through the given pair of points. Solve it for y if possible.
11) $(3,-8),(5,2)$

Change the equation to slope-intercept form and identify the slope and y-intercept.
12) $-6 x+9 y=10$

Write an equation in standard form using only integers for the line described.
13) The line through (4, 2), parallel to $y=-\frac{5}{7} x+1$
14) The line through $(0,5)$, perpendicular to

$$
y=\frac{5}{3} x+2
$$

Solve the problem.
15) Suppose that a sales person observes that if an item is priced at $\$ 3$ per item then 10 items are sold. If 8 items are sold for $\$ 5$ per item then find an equation to model the number of items sold, y, as a function of dollars per item, x.
16) A driver wants to gauge the fuel efficiency of her vehicle at speeds of 30 mph and above. She notices that traveling at an average speed of 40 mph results in a rating of 25 mpg , whereas, at an average speed of 45 mph , her car rates 15 mpg . Find an equation to model the gas mileage, m, as a function of average speed s mph.
17) A car rental company has two rental rates. Rate 1 is $\$ 40$ per day plus $\$.10$ per mile. Rate 2 is $\$ 80$ per day plus $\$.05$ per mile. If you plan to rent for one day, how many miles would you need to drive to pay less by taking Rate 2 ?
18) Assume that the sales of a certain appliance dealer are approximated by a linear function. Suppose that sales were \$5000 in 1982 and $\$ 64,000$ in 1987. Let $x=0$ represent 1982. Find the equation giving yearly sales $S(x)$.

Use the vertical line test to determine whether y is a function of \mathbf{x}.
19)

Find the domain and range.
20) $y=\sqrt{3+x}$
21) $y=2 x^{5}$
22) $f(x)=11+x^{2}$

State the domain of the rational function.
23) $f(x)=\frac{(x-9)(x+2)}{x^{2}-1}$

Find the difference quotient, $\frac{f(x+h)-f(x)}{h}$, for the function and simplify it.
24) $f(x)=2 x-8$
25) $f(x)=x^{2}-6 x$

Solve the problem.

26) The cost of manufacturing a molded part is related to the quantity produced during a production run. When 100 parts are produced, the cost is $\$ 300$. When 600 parts are produced, the cost is $\$ 2300$. What is the average cost per part?

Determine the intervals on which the function is increasing, decreasing, and constant.
27)

Graph the equation.

28) $y=5|x|-9$

29) $y=-x^{2}-4$

Graph.

30) $y=-2(x+8)^{2}-3$

31) $f(x)= \begin{cases}\sum x \Sigma+4, & \text { for } x<0 \\ 4, & \text { for } x \geq 0\end{cases}$

Write the equation of the graph after the indicated transformation(s).
32) The graph of $y=\sqrt[3]{x}$ is shifted 5.6 units to the left. This graph is then vertically stretched by a factor of 3.6. Finally, the graph is reflected across the x -axis.

List the symmetries of the given function, if there are any. Otherwise, state "No symmetry".
33) $f(x)=7 x^{5}+8 x^{3}$

For the pair of functions, perform the indicated operation.
34) $f(x)=6 x-1, g(x)=7 x-3$

Find $f \cdot g$.
35) Find $(f+g)(-5)$ given $f(x)=x+7$ and $g(x)=x-1$.
36) Given $f(x)=4 x-3$ and $g(x)=-8 x+6$, find $(f-g)(a)$.
37) Find $(g \boxtimes f)(-2)$ when $f(x)=\frac{x-4}{3}$ and

$$
g(x)=2 x+5
$$

38) Given $f(x)=\sqrt{x+4}$ and $g(x)=8 x-8$, find $(f \boxtimes g)(x)$.

Find the specified domain.
39) For $f(x)=2 x-5$ and $g(x)=\sqrt{x+4}$, what is the domain of f / g ?

Find the inverse of the function.
40) $f(x)=4 x+6$
41) $f(x)=x^{2}-19, x \geq 0$

Identify the vertex of the parabola.

42) $y=8 x^{2}-144 x+652$

Find the y-intercepts and any x-intercepts.
43) $y=x^{2}-4 x-21$

Solve the quadratic inequality.
44) $x^{2}+5 x-14 \geq 0$
45) $x^{2}+2 x \leq 3$

Solve the problem.
46) The number of mosquitoes $M(x)$, in millions, in a certain area depends on the June rainfall x, in inches: $M(x)=10 x-x^{2}$. What rainfall produces the maximum number of mosquitoes?
47) John owns a hotdog stand. He has found that his profit is represented by the equation $P=-x^{2}+78 x+86$, with P being profits and x the number of hotdogs. How many hotdogs must he sell to earn the most profit?

Perform the indicated operations and write the answer in the form $a+b i$, where a and b are real numbers.
48) $(7+6 i)-(-5+i)$
49) $(6-8 i)(7-5 i)$

Write the quotient in the form a + bi.
50) $\frac{9+3 i}{3-7 i}$

Find all real solutions to the equation.
51) $\sqrt{x+13}=x-7$
52) $7+\sqrt{3 x}=1+x$

Use the rational zero theorem to find all possible rational zeros for the polynomial function.
53) $f(x)=2 x^{3}+6 x^{2}+13 x-8$

Find all of the real and imaginary zeros for the polynomial function.
54) $f(x)=x^{4}+6 x^{3}+7 x^{2}-6 x-8$

Find all real and imaginary solutions.

55) $x^{4}-256=0$
56) $x^{2}+35=5 x$
57) $k^{4}-13 k^{2}+42=0$
58) $x^{2 / 3}-7 x^{1 / 3}+10=0$

Solve the problem.
59) $A(x)=-0.015 x^{3}+1.05 x$ gives the alcohol level in an average person's blood x hrs after drinking 8 oz of 100 -proof whiskey. If the level exceeds 1.5 units, a person is legally drunk. Would a person be drunk after 4 hours?

Describe the behavior of the function's graph at its x-intercepts.
60) $f(x)=(x-2)^{2}(x+6)$
61) $x^{3}-3 x^{2}-9 x+27$

Sketch the graph of the polynomial function.
62) $P(x)=-2 x(x-2)^{2}$

For the given function, find all asymptotes of the type indicated (if there are any).
63) $f(x)=\frac{x-2}{x^{2}-9}$, vertical
64) $f(x)=\frac{x^{2}-3 x+7}{x+7}$, oblique
65) $f(x)=\frac{6 x^{2}-5 x-3}{5 x^{2}-9 x+4}$, horizontal

Sketch the graph of the function, showing all asymptotes with dotted lines.
66) $f(x)=\frac{5 x+1}{x-1}$

Solve the inequality.

$$
\text { 67) } \frac{4}{x+5} \geq \frac{2}{x-2}
$$

Use transformations to help you graph the function.
68) $f(x)=\left(\frac{1}{3}\right)^{x}+2$

69) $f(x)=\log _{2}(x-1)$

Solve the equation.
70) $5^{-x}=\frac{1}{25}$

Find the value of the logarithmic function.
71) $\log _{8}\left(\frac{1}{64}\right)$
72) $\ln \left(e^{-8}\right)$

Find the domain of the function.
73) $f(x)=\log _{2}(2 x-3)$

Solve the equation.
74) $\log _{2} x=3$

Simplify the expression.

75) $10^{\log (t)}$

Rewrite the expression as a single logarithm.

76) $6 \log _{2}(6 x-1)+4 \log _{2}(5 x-4)$

Rewrite the expression as a sum or difference of logarithms or multiples of logarithms.
77) $\log _{5}\left(\frac{x^{4} y^{7}}{4}\right)$

Solve the equation. Round your solution to three decimal places.
78) $4^{3 \mathrm{x}-3}=12$

Solve the equation. Give an exact solution.
79) $\log \left(x^{2}-39\right)=1$

Solve the problem.
80) If $\$ 4000$ is invested in an account that pays interest compounded continuously, how long will it take to grow to $\$ 12,000$ at 7% ?

Solve the equation. Give an exact solution.
81) $\log _{4}(x-5)+\log _{4}(x-5)=1$
82) $\ln (5 x-3)=\ln (9)-\ln (x-3)$

Solve the problem.
83) An initial investment of $\$ 14,000$ is appreciated for 8 years in an account that earns 9% interest, compounded semiannually. Find the amount of money in the account at the end of the period.
84) A certain radioactive isotope has a half -life of approximately 1100 years. How many years to the nearest year would be required for a given amount of this isotope to decay to 30% of that amount?
85) Coyotes are one of the few species of North American animals with an expanding range. The future population of coyotes in a region of Mississippi can be modeled by the equation $P=45+20 \ln (20 t+1)$, where t is time in years. Use the equation to determine when the population will reach 140 . (Round to the nearest tenth of a year.)

Graph:

86) $\frac{x^{2}}{9}+\frac{y^{2}}{49}=1$

87) $\frac{(x+1)^{2}}{9}+\frac{(y-3)^{2}}{25}=1$

88) $\frac{x^{2}}{25}-\frac{y^{2}}{36}=1$

Answer Key

Testname: M125 FINAL REVIEW FALL 2008

1) $\left\{\frac{3}{2},-\frac{5}{2}\right\}$
2) $\{-3,-11\}$
3) $(-\infty, 12]$

4) $[-7,-3)$

5) $\left(-\infty, \frac{2}{7}\right] \boxtimes\left[\frac{10}{7}, \infty\right)$
6) $(1,5)$
7) $5 \sqrt{2} ;\left(-\frac{17}{2},-\frac{3}{2}\right)$
8) Center: $(-5,1)$; radius: 12
9) $(x+8)^{2}+(y+4)^{2}=17$
10)

11) $y=5 x-23$
12) $y=\frac{2}{3} x+\frac{10}{9}, \frac{2}{3},\left(0, \frac{10}{9}\right)$
13) $5 x+7 y=34$
14) $3 x+5 y=25$
15) $y=-x+13$
16) $\mathrm{m}=-2 \mathrm{~s}+105$
17) more than 800 miles
18) $S(x)=11,800 x+5000$
19) No
20) $\mathrm{D}=[-3, \infty)$; $\mathrm{R}=[0, \infty)$
21) $\mathrm{D}=(-\infty, \infty)$; $\mathrm{R}=(-\infty, \infty)$
22) $\mathrm{D}=(-\infty, \infty)$; $\mathrm{R}=[11, \infty)$
23) $(-\infty,-1) \boxtimes(-1,1) \boxtimes(1, \infty)$
24) 2
25) $2 x+h-6$
26) $\$ 4.00$ per part
27) Increasing on $(-2,0)$ and $(3,5)$; Decreasing on (1, 3); Constant on ($-5,-2$)
28)

29)

30)

31)

32) $f(x)=-3.6 \sqrt[3]{x+5.6}$
33) Origin
34) $(f \cdot g)(x)=42 x^{2}-25 x+3$
35) -4
36) $12 \mathrm{a}-9$
37) 1
38) $2 \sqrt{2 x-1}$
39) $(-4, \infty)$
40) $f^{-1}(x)=\frac{x-6}{4}$
41) $f^{-1}(x)=\sqrt{x+19}$
42) $(9,4)$
43) y-intercept $(0,-21)$,
x-intercepts $(7,0)$ and $(-3,0)$
44) $(-\infty,-7] \boxtimes[2, \infty)$
45) $[-3,1]$
46) 5 in .
47) 39 hotdogs
48) $12+5 i$
49) $2-86 \mathrm{i}$
50) $\frac{3}{29}+\frac{36}{29} \mathrm{i}$
51) $\{12\}$
52) $\{12\}$
53) $\pm\left(1, \frac{1}{2}, 2,4,8\right)$
54) $-4,-2,-1,1$
55) $\{ \pm 4, \pm 4 \mathrm{i}\}$
56) $\left\{\frac{5 \pm \mathrm{i} \sqrt{115}}{2}\right\}$
57) $\{ \pm \sqrt{7}, \pm \sqrt{6}\}$
58) $\{125,8\}$
59) Yes

Testname: M125 FINAL REVIEW FALL 2008
60) Does not cross at $(2,0)$, crosses at $(-6,0)$
61) Does not cross at $(3,0)$, crosses at $(-3,0)$
62)

63) $x=3, x=-3$
64) $y=x-10$
65) $y=\frac{6}{5}$
66)

67) $(-5,2) \boxtimes[9, \infty)$
68)

69)

70) $\{2\}$
71) -2
72) -8
73) $\left(\frac{3}{2}, \infty\right)$
74) 8
75) t
76) $\log _{2}\left((6 x-1)^{6}(5 x-4)^{4}\right)$
77) $4 \log _{5}(x)+7 \log _{5}(y)-\log _{5}(4)$
78) 1.597
79) ± 7
80) 15.7 years
81) 7
82) $\frac{18}{5}$
83) $\$ 28,313.18$
84) 1911 years
85) 5.7 years
86)

87)

88)

