## MAT 126: Trigonometry Review for Final Exam

| 2,                        |                      |
|---------------------------|----------------------|
| 1. $\tan A = \frac{2}{9}$ | A is in quadrant III |
| $\sec B = \frac{1}{4}$    | B is in quadrant II  |

Give exact values (simplified fractional/radical form) for the following:

| (a) | sin A =                                    | (b) $\sin B = $                               |  |
|-----|--------------------------------------------|-----------------------------------------------|--|
| (c) | cos A =                                    | (d) cos B =                                   |  |
| (e) | cot A =                                    | (f) $\tan B =$                                |  |
| (g) | sec A =                                    | (h) $\csc B =$                                |  |
| (i) | $\cos(A+B)=$                               |                                               |  |
| (j) | sin 2A =                                   |                                               |  |
| (k) | tan <sup>A</sup> / <sub>2</sub>            |                                               |  |
| 2.  | Convert the following:                     |                                               |  |
|     | (a) $18^\circ = $ radians                  | (b) $7\pi = \underline{\qquad}$ degrees       |  |
|     | (c) $58.27^\circ = $ de                    | grees, minutes, seconds                       |  |
|     | (d) 33 rpm = radians/sec =                 | meters/sec if radius = 4m.                    |  |
|     |                                            |                                               |  |
| 3.  | Solve for x in degrees in the interval [0, | ve for x in degrees in the interval [0, 360): |  |
|     | (a) $\tan (3x - 4) = \cot (4x - 3)$        |                                               |  |
|     | (b) $2\cos^2 x + \cos x - 1 = 0$           |                                               |  |

(c)  $-2\cos 2x = \sqrt{3}$ 

4. Solve the following triangles:



- 5. Solve the following:
  - (a) A forest ranger is at a spot which has an angle of elevation of 22.5° to the top of a 200 foot tall tower. How far is the ranger from the base of the tower?
  - (b) City B is 6 miles due east of City C. City A is 5 miles from C. The bearing from C to A is S 45° W. Find the distance between cities A and B.
  - (c) To approximate the speed of the current of a river, a circular paddle wheel with radius 4 feet is lowered into the water. If the current causes the wheel to rotate at a speed of 10 revolutions per minute, what is the speed of the current in miles per hour? (5280 feet = 1 mile)
- 6. Find the area of the following:
  - (a) A field in the shape of a sector of a circle with central angle 40° and radius of 200 meters.
  - (b) A triangular field with side measures of 50 meters, 75 meters, and 100 meters.
- 7. Graph each function over a two-period interval. Label the x and y axis with the appropriate values. Give the period and the amplitude.

(a)  $y = 3 \sin (6x)$  (b)  $y = 2 \cos (0.5x)$ 

- 8. The function  $y = -2 + 5\sin 3(x \pi)$  has amplitude \_\_\_\_\_, period \_\_\_\_\_, phase shift \_\_\_\_\_ units to the \_\_\_\_\_ and has a vertical translation \_\_\_\_\_\_ units \_\_\_\_\_.
- 9. Give the exact value for the following:
  - (a)  $\sin^{-1}(-1) =$  (b)  $\arccos(\sin(7\pi/6)) =$  \_\_\_\_\_
- 10. Solve for x. Use your calculator and round the value to 4 decimal places.
  - (a)  $\cos^{-1} x = (\tan^{-1} (\frac{4}{3}))$
  - (b)  $8\sin^{-1}(x+1) = \pi$